Aliases: C2.(C42⋊C9), C2.C42⋊C9, C22.(Q8⋊C9), C6.1(C42⋊C3), (C22×C6).7A4, C3.(C23.3A4), C23.3(C3.A4), (C2×C6).1SL2(𝔽3), (C3×C2.C42).C3, SmallGroup(288,3)
Series: Derived ►Chief ►Lower central ►Upper central
C2.C42 — C2.(C42⋊C9) |
Generators and relations for C2.(C42⋊C9)
G = < a,b,c,d | a2=b4=c4=d9=1, cbc-1=ab=ba, ac=ca, ad=da, dbd-1=bc-1, dcd-1=b-1c2 >
(1 25)(2 26)(3 27)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 36)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)
(2 33 26 16)(3 17)(5 36 20 10)(6 11)(8 30 23 13)(9 14)(12 29)(15 32)(18 35)(21 28)(24 31)(27 34)
(1 32)(3 17 27 34)(4 35)(6 11 21 28)(7 29)(9 14 24 31)(10 36)(12 22)(13 30)(15 25)(16 33)(18 19)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
G:=sub<Sym(36)| (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,36)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35), (2,33,26,16)(3,17)(5,36,20,10)(6,11)(8,30,23,13)(9,14)(12,29)(15,32)(18,35)(21,28)(24,31)(27,34), (1,32)(3,17,27,34)(4,35)(6,11,21,28)(7,29)(9,14,24,31)(10,36)(12,22)(13,30)(15,25)(16,33)(18,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;
G:=Group( (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,36)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35), (2,33,26,16)(3,17)(5,36,20,10)(6,11)(8,30,23,13)(9,14)(12,29)(15,32)(18,35)(21,28)(24,31)(27,34), (1,32)(3,17,27,34)(4,35)(6,11,21,28)(7,29)(9,14,24,31)(10,36)(12,22)(13,30)(15,25)(16,33)(18,19), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );
G=PermutationGroup([[(1,25),(2,26),(3,27),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,36),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35)], [(2,33,26,16),(3,17),(5,36,20,10),(6,11),(8,30,23,13),(9,14),(12,29),(15,32),(18,35),(21,28),(24,31),(27,34)], [(1,32),(3,17,27,34),(4,35),(6,11,21,28),(7,29),(9,14,24,31),(10,36),(12,22),(13,30),(15,25),(16,33),(18,19)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 9A | ··· | 9F | 12A | ··· | 12H | 18A | ··· | 18F |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 18 | ··· | 18 |
size | 1 | 1 | 3 | 3 | 1 | 1 | 6 | 6 | 6 | 6 | 1 | 1 | 3 | 3 | 3 | 3 | 16 | ··· | 16 | 6 | ··· | 6 | 16 | ··· | 16 |
36 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 |
type | + | - | + | + | ||||||||
image | C1 | C3 | C9 | SL2(𝔽3) | SL2(𝔽3) | Q8⋊C9 | A4 | C3.A4 | C42⋊C3 | C42⋊C9 | C23.3A4 | C2.(C42⋊C9) |
kernel | C2.(C42⋊C9) | C3×C2.C42 | C2.C42 | C2×C6 | C2×C6 | C22 | C22×C6 | C23 | C6 | C2 | C3 | C1 |
# reps | 1 | 2 | 6 | 1 | 2 | 6 | 1 | 2 | 4 | 8 | 1 | 2 |
Matrix representation of C2.(C42⋊C9) ►in GL5(𝔽37)
36 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 11 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 36 |
27 | 10 | 0 | 0 | 0 |
1 | 10 | 0 | 0 | 0 |
0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 6 |
28 | 21 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 15 |
0 | 0 | 7 | 0 | 0 |
G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,10,0,0,0,11,0,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,36],[27,1,0,0,0,10,10,0,0,0,0,0,31,0,0,0,0,0,1,0,0,0,0,0,6],[28,12,0,0,0,21,0,0,0,0,0,0,0,0,7,0,0,8,0,0,0,0,0,15,0] >;
C2.(C42⋊C9) in GAP, Magma, Sage, TeX
C_2.(C_4^2\rtimes C_9)
% in TeX
G:=Group("C2.(C4^2:C9)");
// GroupNames label
G:=SmallGroup(288,3);
// by ID
G=gap.SmallGroup(288,3);
# by ID
G:=PCGroup([7,-3,-3,-2,2,-2,2,-2,21,380,268,2775,521,80,7564,10589]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^4=d^9=1,c*b*c^-1=a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c^-1,d*c*d^-1=b^-1*c^2>;
// generators/relations
Export